Archives for : authentification

    Cisco Command Cheat Sheet

    I found a list of useful Cisco commands which I though I would post here.


    • Config# terminal editing – allows for enhanced editing commands
    • Config# terminal monitor – shows output on telnet session
    • Config# terminal ip netmask-format hexadecimal|bit-count|decimal – changes the format of subnet masks


    • Config# hostname ROUTER_NAME


    • Config# banner motd # TYPE MESSAGE HERE # – # can be substituted for any character, must start and finish the message


    • Config# description THIS IS THE SOUTH ROUTER – can be entered at the Config-if level


    • Config# clock timezone Central -6
      # clock set hh:mm:ss dd month yyyy – Example: clock set 14:13:00 25 August 2003


    • Config# config-register 0x2100 – ROM Monitor Mode
    • Config# config-register 0x2101 – ROM boot
    • Config# config-register 0x2102 – Boot from NVRAM


    • Config# boot system tftp FILENAME SERVER_IP – Example: boot system tftp 2600_ios.bin
    • Config# boot system ROM
    • Config# boot system flash – Then – Config# reload


    • Config# cdp run – Turns CDP on
    • Config# cdp holdtime 180 – Sets the time that a device remains. Default is 180
    • Config# cdp timer 30 – Sets the update timer.The default is 60
    • Config# int Ethernet 0
    • Config-if# cdp enable – Enables cdp on the interface
    • Config-if# no cdp enable – Disables CDP on the interface
    • Config# no cdp run – Turns CDP off


    • Config# ip host ROUTER_NAME INT_Address – Example: ip host lab-a
    • Config# ip host RTR_NAME INT_ADD1 INT_ADD2 INT_ADD3 – Example: ip host lab-a – (for e0, s0, s1)


    • Config# ip domain-lookup – Tell router to lookup domain names
    • Config# ip name-server – Location of DNS server
    • Config# ip domain-name – Domain to append to end of names


    • # clear interface Ethernet 0 – Clears counters on the specified interface
    • # clear counters – Clears all interface counters
    • # clear cdp counters – Clears CDP counters


    • Config# ip route Net_Add SN_Mask Next_Hop_Add – Example: ip route
    • Config# ip route Next_Hop_Add – Default route
    • Config# ip default-network Net_Add – Gateway LAN network


    • Config# ip routing – Enabled by default
    • Config# router rip
    • Config# router igrp 100
    • Config# interface Ethernet 0
    • Config-if# ip address
    • Config-if# no shutdown


    • Config# ipx routing
    • Config# interface Ethernet 0
    • Config# ipx maximum-paths 2 – Maximum equal metric paths used
    • Config-if# ipx network 222 encapsulation sap – Also Novell-Ether, SNAP, ARPA on Ethernet. Encapsulation HDLC on serial
    • Config-if# no shutdown


    IP Standard1-99
    IP Extended100-199
    IPX Standard800-899
    IPX Extended900-999
    IPX SAP Filters1000-1099


    • Config# access-list 10 permit – allow all src ip’s on network
    • Config# access-list 10 permit host – specifies a specific host
    • Config# access-list 10 permit any – allows any address
    • Config# int Ethernet 0
    • Config-if# ip access-group 10 in – also available: out


    • Config# access-list 101 permit tcp eq telnet
      -protocols: tcp, udp, icmp, ip (no sockets then), among others
      -source then destination address
      -eq, gt, lt for comparison
      -sockets can be numeric or name (23 or telnet, 21 or ftp, etc)
    • Config# access-list 101 deny tcp any host eq www


    • Config# access-list 101 permit ip any any
    • Config# interface Ethernet 0
    • Config-if# ip access-group 101 outIPX STANDARD:
    • Config# access-list 801 permit 233 AA3 – source network/host then destination network/host


    • Config# access-list 801 permit -1 -1 – “-1” is the same as “any” with network/host addresses
    • Config# interface Ethernet 0
    • Config-if# ipx access-group 801 outIPX EXTENDED:
    • Config# access-list 901 permit sap 4AA all 4BB all
      – Permit protocol src_add socket dest_add socket
      -“all” includes all sockets, or can use socket numbers


    • Config# access-list 901 permit any any all any all
      -Permits any protocol with any address on any socket to go anywhere
    • Config# interface Ethernet 0
    • Config-if# ipx access-group 901 inIPX SAP FILTER:
    • Config# access-list 1000 permit 4aa 3 – “3” is the service type


    • Config# access-list 1000 permit 4aa 0 – service type of “0” matches all services
    • Config# interface Ethernet 0
    • Config-if# ipx input-sap-filter 1000 – filter applied to incoming packets


    • Config-if# ipx output-sap-filter 1000 – filter applied to outgoing packets


    • Config# ip access-list standard LISTNAME
      -can be ip or ipx, standard or extended
      -followed by the permit or deny list
    • Config# permit any
    • Config-if# ip access-group LISTNAME in
      -use the list name instead of a list number
      -allows for a larger amount of access-lists


    • Config-if# encapsulation ppp
    • Config-if# ppp authentication chap pap
      -order in which they will be used
      -only attempted with the authentification listed
      -if one fails, then connection is terminated
    • Config-if# exit
    • Config# username Lab-b password 123456
      -username is the router that will be connecting to this one
      -only specified routers can connect


    • Config-if# ppp chap hostname ROUTER
    • Config-if# ppp chap password 123456
      -if this is set on all routers, then any of them can connect to any other
      -set same on all for easy configuration


    • Config# isdn switch-type basic-5ess – determined by telecom
    • Config# interface serial 0
    • Config-if# isdn spid1 2705554564 – isdn “phonenumber” of line 1
    • Config-if# isdn spid2 2705554565 – isdn “phonenumber” of line 2
    • Config-if# encapsulation PPP – or HDLC, LAPD

    DDR – 4 Steps to setting up ISDN with DDR Configure switch type

    1. Config# isdn switch-type basic-5ess – can be done at interface config

    2. Configure static routes
    Config# ip route – sends traffic destined for to
    Config# ip route bri0 – specifies how to get to network (through bri0)

    3. Configure Interface
    Config-if# ip address
    Config-if# no shutdown
    Config-if# encapsulation ppp
    Config-if# dialer-group 1 – applies dialer-list to this interface
    Config-if# dialer map ip name Lab-b 5551212
    connect to lab-b at 5551212 with ip if there is interesting traffic
    can also use “dialer string 5551212” instead if there is only one router to connect to

    4. Specify interesting traffic
    Config# dialer-list 1 ip permit any
    Config# dialer-list 1 ip list 101 – use the access-list 101 as the dialer list

    5. Other Options
    Config-if# hold-queue 75 – queue 75 packets before dialing
    Config-if# dialer load-threshold 125 either
    -load needed before second line is brought up
    -“125” is any number 1-255, where % load is x/255 (ie 125/255 is about 50%)
    -can check by in, out, or either

    Config-if# dialer idle-timeout 180
    -determines how long to stay idle before terminating the session
    -default is 120


    • Config# interface serial 0
    • Config-if# encapsulation frame-relay – cisco by default, can change to ietf
    • Config-if# frame-relay lmi-type cisco – cisco by default, also ansi, q933a
    • Config-if# bandwidth 56
    • Config-if# interface serial 0.100 point-to-point – subinterface
    • Config-if# ip address
    • Config-if# frame-relay interface-dlci 100
      -maps the dlci to the interface
      -can add BROADCAST and/or IETF at the end
    • Config-if# interface serial 1.100 multipoint
    • Config-if# no inverse-arp – turns IARP off; good to do
    • Config-if# frame-relay map ip 48 ietf broadcast
      -maps an IP to a dlci (48 in this case)
      -required if IARP is turned off
      -ietf and broadcast are optional
    • Config-if# frame-relay map ip 54 broadcast


    • Show access-lists – all access lists on the router
    • Show cdp – cdp timer and holdtime frequency
    • Show cdp entry * – same as next
    • Show cdp neighbors detail – details of neighbor with ip add and ios version
    • Show cdp neighbors – id, local interface, holdtime, capability, platform portid
    • Show cdp interface – int’s running cdp and their encapsulation
    • Show cdp traffic – cdp packets sent and received
    • Show controllers serial 0 – DTE or DCE status
    • Show dialer – number of times dialer string has been reached, other stats
    • Show flash – files in flash
    • Show frame-relay lmi – lmi stats
    • Show frame-relay map – static and dynamic maps for PVC’s
    • Show frame-relay pvc – pvc’s and dlci’s
    • Show history – commands entered
    • Show hosts – contents of host table
    • Show int f0/26 – stats of f0/26
    • Show interface Ethernet 0 – show stats of Ethernet 0
    • Show ip – ip config of switch
    • Show ip access-lists – ip access-lists on switch
    • Show ip interface – ip config of interface
    • Show ip protocols – routing protocols and timers
    • Show ip route – Displays IP routing table
    • Show ipx access-lists – same, only ipx
    • Show ipx interfaces – RIP and SAP info being sent and received, IPX addresses
    • Show ipx route – ipx routes in the table
    • Show ipx servers – SAP table
    • Show ipx traffic – RIP and SAP info
    • Show isdn active – number with active status
    • Show isdn status – shows if SPIDs are valid, if connected
    • Show mac-address-table – contents of the dynamic table
    • Show protocols – routed protocols and net_addresses of interfaces
    • Show running-config – dram config file
    • Show sessions – connections via telnet to remote device
    • Show startup-config – nvram config file
    • Show terminal – shows history size
    • Show trunk a/b – trunk stat of port 26/27
    • Show version – ios info, uptime, address of switch
    • Show vlan – all configured vlan’s
    • Show vlan-membership – vlan assignments
    • Show vtp – vtp configs

    For Native IOS – Not CatOS


    • Config# ip address
    • Config# ip default-gateway MODE:
    • Config# interface Ethernet 0/5 – “fastethernet” for 100 Mbps ports
    • Config-if# duplex full – also, half | auto | full-flow-control


    • Config# switching-mode store-and-forward – also, fragment-free


    • Config# mac-address-table permanent aaab.000f.ffef e0/2 – only this mac will work on this port
    • Config# mac-address-table restricted static aaab.000f.ffef e0/2 e0/3
      -port 3 can only send data out port 2 with that mac
      -very restrictive security
    • Config-if# port secure max-mac-count 5 – allows only 5 mac addresses mapped to this port


    • Config# vlan 10 name FINANCE
    • Config# interface Ethernet 0/3
    • Config-if# vlan-membership static 10TRUNK LINKS:
    • Config-if# trunk on – also, off | auto | desirable | nonegotiate
    • Config-if# no trunk-vlan 2
      -removes vlan 2 from the trunk port
      -by default, all vlans are set on a trunk port



    • Config# delete vtp – should be done prior to adding to a network
    • Config# vtp server – the default is server, also client and transparent
    • Config# vtp domain Camp – name doesn’t matter, just so all switches use the same
    • Config# vtp password 1234 – limited security
    • Config# vtp pruning enable – limits vtp broadcasts to only switches affected
    • Config# vtp pruning disableFLASH UPGRADE:
    • Config# copy tftp:// opcode – “opcode” for ios upgrade, “nvram” for startup config


    • Config# delete nvram


    • show ip bgp – Displays entries in the BGP routing table.
    • show ip bgp injected-paths – Displays paths in the BGP routing table that were conditionally injected.
    • show ip bgp neighbors – Displays information about the TCP and BGP connections to neighbors.

    BGP Conditional Route Injection:

    Step 1 Router(config)# router bgp as-number
    -  Places the router in router configuration mode, and configures the router to run a BGP process.

    Step 2 Router(config-router)# bgp inject-map ORIGINATE exist-map LEARNED_PATH
    -  Configures the inject-map named ORIGINATE and the exist-map named LEARNED_PATH for conditional route injection.

    Step 3 Router(config-router)# exit
    -Exits router configuration mode, and enters global configuration mode.

    Step 4 Router(config)# route-map LEARNED_PATH permit sequence-number
    – Configures the route map named LEARNED_PATH.

    Step 5 Router(config-route-map)# match ip address prefix-list ROUTE
    – Specifies the aggregate route to which a more specific route will be injected.

    Step 6 Router(config-route-map# match ip route-source prefix-list ROUTE_SOURCE
    – Configures the prefix list named ROUTE_SOURCE to redistribute the source of the route.
    Note The route source is the neighbor address that is configured with the neighbor remote-as command. The tracked prefix must come from this neighbor in order for conditional route injection to occur.

    Step 7 Router(config-route-map)# exit
    – Exits route-map configuration mode, and enters global configuration mode.

    Step 8
    Router(config)# route-map ORIGINATE permit 10
    – Configures the route map named ORIGINATE.

    Step 9 Router(config-route-map)# set ip address prefix-list ORIGINATED_ROUTES
    – Specifies the routes to be injected.

    Step 10 Router(config-route-map)# set community community-attribute additive
    – Configures the community attribute of the injected routes.

    Step 11 Router(config-route-map)# exit
    – Exits route-map configuration mode, and enters global configuration mode.

    Step 12
    Router(config)# ip prefix-list ROUTE permit
    – Configures the prefix list named ROUTE to permit routes from network

    Step 13 Router(config)# ip prefix-list ORIGINATED_ROUTES permit
    – Configures the prefix list named ORIGINATED_ROUTES to permit routes from network

    Step 14 Router(config)# ip prefix-list ORIGINATED_ROUTES permit
    – Configures the prefix list named ORIGINATED_ROUTES to permit routes from network

    Step 15 Router(config)# ip prefix-list ROUTE_SOURCE permit
    – Configures the prefix list named ROUTE_SOURCE to permit routes from network
    Note The route source prefix list must be configured with a /32 mask in order for conditional route injection to occur.


    Step 1 (config)# interface ethernet0/0
    (config-if)#ip address
    (config-if)# no shutdown
    – Configure an IP address on the router’s Ethernet port, and bring up the interface. (On an existing router, you would have already done this.)

    Step 2 (config)# ip dhcp pool mypool
    – Create a DHCP IP address pool for the IP addresses you want to use.

    Step 3 (dhcp-config)# network /8
    – Specify the network and subnet for the addresses you want to use from the pool.

    Step 4 (dhcp-config)#domain-name
    – Specify the DNS domain name for the clients.

    Step 5 (dhcp-config)#dns-server
    – Specify the primary and secondary DNS servers.

    Step 6 (dhcp-config)#default-router
    – Specify the default router (i.e., default gateway).

    Step 7 (dhcp-config)#lease 7
    – Specify the lease duration for the addresses you’re using from the pool.

    Step 8 (dhcp-config)#exit
    – Exit Pool Configuration Mode.

    This takes you back to the global configuration prompt.

    Next, exclude any addresses in the pool range that you don’t want to hand out.

    For example, let’s say that you’ve decided that all IP addresses up to .100 will be for static IP devices such as servers and printers. All IP addresses above .100 will be available in the pool for DHCP clients.

    Here’s an example of how to exclude IP addresses .100 and below:

    Optional (config)#ip dhcp excluded-address

    The full DHCP reference can be found on the CISCO site.

    Common Commands and Troubleshooting

    • Set a password on the console line:
      • configure terminal
      • line console 0
      • password ‘cisco’
      • login
    • Passwords are case sensitive.
    • You must configure a password on the VTY lines, without one no one will be able to telnet to the switch/router.
    • The default mode when logging into a switch/router via telnet or SSH is user exec mode, which is indicated by the ‘>’ prompt.
    • To configure the switch/router you need to use the privileged EXEC mode. To do this you enter the enable command in user EXEC mode. The prompt is indicated with ‘#’.
    • If both enable secret and enable password are set, the enable secret will be used.
    • The enable secret is encrypted (by default) where as the enable password is in clear text.
    • In a config containing an enable secret 5 ‘hash’ the 5 refers to the level of encryption being used.
    • If no enable password/secret has been set when someone telnets to the device, they will get a ‘%No password set’ message. Someone with physical access must set the password.
    • To place all telnet users directly into enable mode:
      • configure terminal
      • line vty 0 4
      • privilege level 15
    • To put a specific user directly into privileged EXEC mode (enable mode)
      • username superman privilege 15 password louise
    • Telnet sends all data including passwords in clear text which can be intercepted.
    • SSH encrypts all data preventing an attacker from intercepting it.
    • Setting up a local user/password login database for use with telnet:
      • configure terminal
      • line vty 0 4
      • login local
      • exit
      • username telnetuser1 password secretpass
    • To set up SSH you need to create the local user database, the domain name must be specified with the ip domain-name command and a crypto key must be created with the crypto key generate rsa command. To enable SSH on the VTY lines, use the command transport input ssh.
    • If you connect two Cisco switches together and the lights don’t go amber then green, but instead stays off. A straight through cable has been used instead of a crossover cable.
    • The term ‘a switches management interface’ normally refers to VLAN1.
    • Assign a default gateway using the ip default-gateway ipaddress command.
    • You can use the command interface range fasterthernet 0/1 – 12 to select a range of interfaces to configure at once.
    • MOTD banner appears before login prompt.
    • The login banner appears before the login prompt but after the MOTD banner.
    • The banner exec appears after a successful logon.
    • line con 0 – configuring the logging synchronous on the console port stops the router from displaying messages (like an interface state change) until it detects no input from the keyboard and not other output from the router, such as a show commands output.
    • exec-timeout x y (x=minutes, y=seconds) – the default is 5 minutes. Can be disabled by setting x=0 y=0
    • Shortcut commands
      • Up Arrow – will show you the last command you entered. Control+P does the same thing.
      • Down Arrow – will bring you one command up in the command history. Control+N does the same thing.
      • CTRL+A takes the cursor to the start of the current command.
      • CTRL+E takes the cursor to the end of the current command.
      • Left arrow or CTRL+B moves backwards (towards the start) of the command one character at a time.
      • Right arrow or CTRL+P moves forwards (towards the end) of the command one character at a time.
      • CTRL+D deletes one character (the same as backspace).
      • ESC+B moves back one word in the current command.
      • ESC+F moves forward one word in the current command.
    • show history command will show the last 10 commands run by default.
    • the history size can be increased individually on the console port and on the VTY lines with the history size x command.
    • Config modes
      • config t R1<config> is the global configuration mode.
      • line vty 0 4 R1<config-line> is the line config mode.
      • interface fastethernet 0/1 R1<config-if> interface config mode.
    • Cisco Discovery Protocol (CDP) runs by default on Cisco routers and switches. It runs globally and on a per-interface level.
    • CDP discovers basic information about neighboring switches and routers.
    • On media that supports multicasts at the data link layer, CDP uses multicast frames. on other media, CDP sends a copy of the CDP update to any known data-link addresses.
    • The show cdp command shows CDP settings.
    • CDP can be disabled globally using the command no cdp run and re-enable using cdp run.
    • CDP can be disabled at an interface level using the no cdp enable command at the sub-interface level.
    • The command show cdp neighbor – lists one summary line of information about each neighbor. Including:
      • Device ID – the remote devices hostname.
      • Local Interface – the local switch/router interface connected to the remote host.
      • Holdtime – is the number of seconds the local device will retain the contents of the last CDP advertisement received from the remote host.
      • Capability – shows you the type of device the remote host is.
      • Platform – is the remote devices hardware platform.
      • Port ID – is the remote interface on the direct connection.
    • The command show cdp neighbor detail – lists one large set (approx 15 lines) of information, one set for every neighbor. Including:
      • The IOS version.
      • VTP management domain.
      • Management addresses.
    • show cdp entry name – lists the same information as the show cdp neighbors detail command, but only for the named neighbor (case sensitive).
    • show cdp – states whether CDP is enabled globally, and lists the default update and holdtime timers.
    • show cdp traffic – lists global statistics for the number of CDP advertisements sent and received.
    • show cdp interface type number – states whether CDP is enabled on each interface or a single interface if the interface is listed, and states the update and holdtime timers on those interfaces.
    • CDP should be disabled on interfaces it is not needed to limit risk of an attacker learning details about each switch or router. Use the no cdp enable interface subcommand to disable CDP and the cdp enable interface subcommand to re-enable it.
    • The command show cdp interface shows the CDP settings for every interface.
    • Interface status messages:
      • Interface status is down/down – this indicates a physical problem, most likely a loose or unplugged cable.
      • Line protocol is down, up/down – this indicates a problem at the logical level, most likely an encapsulation mismatch or a missing clock rate.
      • Administratively down – this indicates the interface has been shutdown and needs to be manually opened with the sub interface command no shutdown.
    • The command show mac-address-table shows the mac address table. show mac-address-table dynamic sows the dynamically learned entries only.
    • Most problems on a switch are caused by human error – misconfiguration.
    • The command show debugging shows all the currently running debugs.
    • undebug all – will turn all debugging off.
    • The command show vlan brief shows a switches VLAN configuration.
    • If pinging fails on a pc, there is a problem with the local PC, most likely a bad install of TCP/IP.
    • On a pc the command netstat -rn shows the pc’s routing table.
    • Additional Telnet commands:
      • show sessions shows information about each telnet session, the where command does the same thing.
      • resume x, x being the session number is used to resume a telnet session.
      • To suspend a session use the command CTRL+ALT+6.
      • To disconnect an open session use the command disconnect x, x being the session number.
    • Ping result codes:
      • !!!!! – IP connectivity to the destination is ok.
      • ….. – IP connectivity to the destination does not exist.
      • U.U.U – the local router has a route to the destination, but a downstream router does not.
    • debug ip packet – can help troubleshooting the above ping results.
    • When using traceroute or extended ping the Escape Sequence is: CTRL+SHIFT+6.
    • Extended ping can only be run from enable mode.
    • If a routing table contains multiple routes to the same destination with multiple next hops and the prefixes are different, the most specific (longest) prefix route will be used. If all of the prefix lengths are the same the Administrative Distance will be used. [AD/Metric].
    • Administrative Distance is a measure of a routes believability, with a lower AD being more believable than a route with a higher AD. AD only comes into play if the prefix lengths are the same.
    • You can set the Administrative Distance on a static route with the command ip route 150, you would do this to set a backup route if a dynamic route fails/is not available in the routing table.

    Cisco NX-OS/IOS BGP (Advanced) Comparison

    These may also assist: Undocumented Cisco Commands

    Bluetooth – Security

    Redirected from Bluetooth



    1 Bluetooth
    2 Wireless- History
    3 Wireless- Technologies
    4 Bluetooth- Technical Introduction
    5 Bluetooth- Advantages
    6 Bluetooth- Applications
    7 Bluetooth- Security Issues
    7.1 The SNARF attack
    7.2 The BACKDOOR attack
    7.3 The BLUEBUG attack
    7.4 Bluejacking
    7.5 Warnibbling
    8 Future of Bluetooth
    9 See also:
    10 Reference List


    Bluetooth is a new technology that utilises radio frequency waves as a way to communicate wirelessly between digital devices. It sets up personal area networks that incorporate all of a persons digital devices into one system for both convergence and convenience.

    Wireless- History

    Many people put the invention of [wireless] radio down to Guglielmo Marconi, who in 1895 sent the first radio telegraph transmission across the English Channel. Only twelve years later radio began being used in the public sphere. [Mathias, p.2] Up until then however, many wireless pioneers conducted trials across lakes where the antenna used to transmit the signal was longer than the distance across the lake. [Brodsky, p. 3] After its introduction the main use of wireless radio was for military communications where its first use was for the Boer War. [Flichy, p. 103] The invention of broadcast radio ensured the feasibility of wireless technologies. [Morrow, p. 2] By the 1920s, radio had become a well-recognised mass medium. [Flichy, p. 111] From the 1980s until now, wireless communications have been through several stages, from 1G (analogue signal), 2G (digital signal) and 3G (always on, faster data rate). [Lightman and Rojas, p. 3] The history of Bluetooth is a much more recent one, with the first Bluetooth-enabled products coming into existence in 2000. Named after Harald Blatand the first, king of Denmark around twelve hundred years ago, who joined the Danish and Norwegian kingdoms, Bluetooth technology is founded on this same unifying principle of being able to unite the computer and telecommunication industr[ies]. [Ganguli, p. 5] In 1994 the Ericsson Company began looking into the idea of replacing cables connecting accessories to mobile phones and computers with wireless links, and this became the main inspiration behind Bluetooth. [Morrow, p. 10]

    Wireless- Technologies

    Bluetooth is not the only wireless technology currently being developed and utilised. Other wireless technologies, including 802.11b, otherwise known as Wi-Fi, Infrared Data Association (IrDA), Ultra- Wideband Radio (UWB), and Home RF are being applied to similar technologies that Bluetooth use with mixed results. 802.11 is the most well known technology, excluding Bluetooth, and uses the same radio frequency, meaning that they are not compatible as they cause interference with each other. 802.11 is being implemented into universities in the US, Japan and China, as well as food and beverage shops where they are being used to identify students and customers. Even airports have taken up the 802.11 technology, with airports all over America, and three of Americas most prominent airlines promoting the use of it. [Lightman and Rojas, p. 202-3] Infrared Data Association is extremely inferior to that of Bluetooth. Its limitations include only being able to communicate point-to-point, needing a line of sight, and it has a speed of fifty- six kilobytes per second, whereas Bluetooth is one megabyte per second. [Ganguli, p. 17] The Ultra- Wideband Radio is superior to that of Bluetooth in that it can transmit at greater lengths (up to 70 metres), with only half of the power that Bluetooth uses. [Ganguli, p.17] HomeRF is a technology that is not very well known. It is used for data and voice communication and targeted for the residential market segment and does not serve enterprise- class WLANs, public access systems or fixed wireless Internet access. [Ganguli, p.17-18]

    Bluetooth- Technical Introduction

    Bluetooth is a short- range radio device that replaces cables with low power radio waves to connect electronic devices, whether they are portable or fixed. The Bluetooth device also uses frequency hopping to ensure a secure, quality link, and it uses ad hoc networks, meaning that it connects peer-to-peer. It can be operated worldwide and without a network because it uses the unlicensed Industrial- Scientific Medical (ISM) band for transmission that varies with a change in location. [Ganguli, p. 25-6] The Bluetooth user has the choice of point-to-point or point-to-multipoint links whereby communication can be held between two devices, or up to eight. [Ganguli, p. 96] When devices are communicating with each other they are known as piconets, and each device is designated as a master unit or slave unit, usually depending on who initiates the connection. However, both devices have the potential to be either a master or a slave. [Swaminatha and Elden, p. 49]

    Bluetooth- Advantages

    There are many advantages to using Bluetooth wireless technologies including the use of a radio frequency, the inexpensive cost of the device, replacing tedious cable connections, the low power use and implemented security measures. The use of an unlicensed radio frequency ensures that users do not need to gain a license in order to use it. Unlike Infrared which needs to have a line of sight in order to work, Bluetooth radio waves are omnidirectional and do not need a clear path. The device itself is relatively cheap and easy to use, one can be bought for around ten American dollars, and this price is currently decreasing. Compare this to the expensive cost of implementing hundreds of cables and wires into an office and there is no competition. Of course, this is the main reason for the take -up in Bluetooth -enabled devices; it does away with cables. Another of Bluetooths advantages is its low power use, ensuring that battery operated devices such as mobile phones and personal digital assistants wont have their battery life drained with the use of it. This low power consumption also guarantees minimal interruption from other radio operated and wireless devices that operate at a higher power. Bluetooth has several enabled security measures that ensures a level of privacy and security, including frequency hopping, whereby the device changes radio frequency sixteen hundred times per second. Also within the security tools are encryption and authentification mechanisms that guarantee little interference by unauthorised hackers. [Ganguli, p. 330] One of the best advantages of Bluetooth devices, especially the hands free device that connects to a mobile phone, is that it removes radiation from the brain region. [Tsang, p.1]

    Bluetooth- Applications

    The applications that are in development or current use for the Bluetooth technology include such areas as automotive, medical, industrial equipment, output equipment, digital -still cameras, computers, and communications systems. [Lightman and Rojas, p. 201] Bluetooth is an ad hoc network user, and therefore it may be used for social networking, i.e. people can meet and share files or link their Bluetooth devices together to play games or other such activities. [Smyth, p. 70] Using Bluetooth, a mobile phone can become a three- way phone, where at home it connects to a landline for cheaper calls, on the move it acts as a mobile phone and when it comes in contact with another Bluetooth-enabled phone it acts as a walkie- talkie. This walkie- talkie option allows for free interaction and communication, as Bluetooth is not connected to any telecommunications network. [Gupta, p.1] Bluetooth also allows automatic synchronization of your desktop, mobile computer, notebook and your mobile phone for the user to have all of their data managed as one. [Gupta, p.1]

    Bluetooth- Security Issues

    Bluetooth has several threats which range in level of risk and how widespread the action is. These threats have the ability to provide criminals with sensitive information on both corporate and personal levels. The only way to avoid such threats is for manufacturers, distributors, and consumers to be provided with more information on how they are committed, current attack activity and how to combat them. This information can be used on a technical level for manufacturers, it can be used by distributors at retail levels to teach consumers the risks and it can be used directly by consumers to be aware of the threats. The outcome of such research will allow end users of Bluetooth products to have an upper hand in this wireless warfare. Bluetooth security is in early stages with regards to both the attackers, their techniques and consumers understanding of these attacks. Some research has been conducted into what the attackers are doing and how they do it. Adam Laurie of A.L Digital Ltd is leading the research race in Bluetooth security and is often linked to academic resources. Laurie’s research has uncovered the following capabilities of Bluetooth attacks:

    • Confidential data such as the entire phone book, calender and the phone’s IMEI.
    • Complete memory contents of some mobile phones can be accessed by a previously trusted (“paired”) device that has since been removed from the trusted list.
    • Access can be gained to the AT command set of the device, giving full access to the higher level commands and channels, such as data, voice and messaging.

    Attacks on Bluetooth devices at this stage are relatively new to consumers, and therefore are not widely seen as a real threat. Attacks such as the Bluejack attack are probably more recognised by consumers due to its perceived humorous and novelty nature as well as the ease to Bluejack someone. Users who allow their phone to be Bluejacked open the door to more serious attacks, such as the Backdoor attack which have a low level of awareness amongst consumers as attackers can attach to the device with out the users knowledge. Corporations are starting to understand the risks Bluetooth devices pose, Michael Ciarochi (in Brewin 2004) stated that ‘Bluetooth radios were included in laptop PCs that were being configured by an IT Engineer. It raises the possibility of opening a wireless back door into data stored on the PCs. Such a security weakness would be extremely attractive to hackers. Although Bluetooth invites hackers to such attacks; Bluetooth Venders are playing down the risks, Brewin (2004) said that ‘Bluetooth advocates last week dismissed growing security fears about the short-range wireless technology, saying any flaws are limited to a few mobile-phone models. They also detailed steps that users can take to secure Bluetooth devices’. There are many methods of Bluetooth attacks, the Snarf, the Backdoor, Bluebug, Bluejack and Warnibbling attack are the only recognised attacks at this early stage. Below are explanations of such attacks.

    The SNARF attack

    It is possible for attackers to connect to the device without alerting the user, once in the system sensitive data can be retrieved, such as the phone book, business cards, images, messages and voice messages.

    Local Copy: BlueSnarf_CeBIT2004.pdf

    The BACKDOOR attack

    The backdoor attack is a higher concern for Bluetooth users; it allows attackers to establishing a trust relationship through the “pairing” mechanism, but ensuring that the user can not see the target’s register of paired devices. In doing this attackers have access to all the data on the device, as well as access to use the modem or internet; WAP and GPRS gateways may be accessed without the owner’s knowledge or consent.

    The BLUEBUG attack

    This attack gives access to the AT command set, in other words it allows the attacker to make premium priced phone calls, allows the use of SMS, or connection the internet. Attackers can not only use the device for such fraudulent exercises it also allows identity theft to impersonate the user.


    Dibble (2004) explained that ‘Just as SMS was spawned, there’s a new craze that’s spreading across parts of Europe. Reportedly, it’s more prominent in the UK, but popular elsewhere too’. Bluejacking allows attackers to send messages to strangers in public via Bluetooth. When the phones ‘pair’ the attacked can write a message to the user. Although it may seem harmless at first, there is a downside. Once connected the attacker may then have access to any data on the users Bluetooth device, which has obvious concerns. Powell (2004: 22) explained that ‘Users can refuse any incoming message or data, so Bluejackers change their username to a short barb or compliment to beat you to the punch. For example, you might receive something along the lines of “Incoming message from: Dude, you’ve been Bluejacked.” Or, “Incoming message from: ROI is overrated.” Bluejacking is regarded as a smaller threat to Bluetooth as users being attacked are aware they have been Bluejacked. This does not mean however that they are aware that sensitive information is being accessed and used in a malicious manner.


    Warnibbling is a hacking technique using Redfang, or similar software that allows hackers to reveal corporate or personal sensitive information. Redfang allows hackers to find Bluetooth devices in the area, once found, the software takes you through the process of accessing any data that is stored on that device. Redfang also allows non-discoverable devices to be found. Whitehouse explains when testing Redfang ‘One of the first obstacles we had to overcome was the discovery of non-discoverable devices (it was surprising to see the number of devices that dont by default implement this security measure)’.

    Future of Bluetooth

    Further information, and somewhat speculation is required for consumers and Bluetooth stakeholders on the future of Bluetooth. Such information will provide a clearer understanding of why security of Bluetooth must be improved. Luo and Lee (2004) provide a short term prediction of where Bluetooth is heading, Europe and Asian countries already offer electronic newspapers, subway tickets, and car parking fees via wireless devices. Collins (2003) says that Bluetooth devices ‘appear to be more secure than 802.11 wireless LANs. However, this situation may not last, as the Bluetooth technology becomes more widespread and attracts greater interest from the hacking community’.

    See also:

    Reference List

    • Brodsky, I. (1995) Wireless: The Revolution in Personal Telecommunications, Massachussetts, USA: Artech House Inc, ISBN 0890067171 (Erin Watson)
    • Collins, G. (2003) Bluetooth Security. [Online], Available: Academic Search Elite, ISSN:0360-5280 [Accessed 6/9/04]. (Ben Henzell)
    • Dibble, T (2003) ‘Bluejack city: a new wireless craze is spreading through Europe’ [Online]. Available: [Accessed 4/8/04. (Ben Henzell)
    • Finn, E. (2004) Be carefull when you cut the cord. Popular Science [Online], vol. 264, issue. 5, p30. Available: Ebsco Host: Academic Search Elite, ISSN:0161-7370 [Accessed 6/9/04]. (Ben Henzell)
    • Flichy, P. (1995) Dynamics of Modern Communication, London: Sage Publications, ISBN 0803978502 (Erin Watson)
    • Ganguli, M. (2002) Getting Started with Bluetooth, Ohio: Premier Press, ISBN 1931841837 (Erin Watson)
    • Gupta, P. 1999. Bluetooth Technology: What are the Applications?. (accessed August 23, 2004). (Erin Watson)
    • Laurie, B & L (2003) Serious flaws in Bluetooth security lead to disclosure of personal data [Online]. Available: [Accessed 4th Aug 2004]. (Ben Henzell)
    • Lightman, A. and Rojas, W. (2002) Brave New Unwired World, New York, USA: John Wiley and Sons, Inc., ISBN 0471441104 (Erin Watson)
    • Luo, X. Lee, C. (2004). Micropayments in Wireless M-Commerce: Issues, Security, and Trend[Online]. Available: [Accessed 4/8/2004] (Ben Henzell)
    • Morrow, R. (2002) Bluetooth Operation and Use, New York, USA: The McGraw- Hill Companies, ISBN 007138779X (Erin Watson)
    • Powell, W. (2004) The Wild Wild Web T+D [Online], Vol. 58, issue. 1, p22. Available: Academic Search Elite, ISSN:1535-7740 [Accessed 6/9/04]. (Ben Henzell)
    • Smyth, P. (ed.)(2004) Mobile and Wireless Communications: Key Technologies and Future Applications, London, UK: The Institute of Electrical Engineers, ISBN 0863413684 (Erin Watson)
    • Swaminatha, T. and Elden, C. (2003) Wireless Security and Privacy: Best Practices and Design Techniques, Massachussetts, USA: Pearson Education, Inc., ISBN 0201760347 (Erin Watson)
    • Tsang, W. et al. Date unknown. Bluetooth Applications. (accessed August 23, 2004). (Erin Watson)
    • Whitehouse, O. (2003).’War Nibbling: Bluetooth Insecurity’ [Online]. Available: [Accessed 9/8/04] (Ben Henzell)

    Erin Watson 08:47, 8 Sep 2004 (EST) –nhenzell 12:30, 8 Sep 2004 (EST)